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Quassin (1) belongs to a large and constantly expanding
family of terpenoid bitter principles,1 extracted from the
plant species Simaroubaceae2 and named collectively as
quassinoids. The quassinoids have been demonstrated to
exhibit a wide spectrum of biological properties.1a,3 Their
highly oxygenated tetracyclic/pentacyclic carbon frame-
works, comprising a number of contiguous stereocenters,
pose a formidable synthetic challenge and have attracted
immense interest from synthetic chemists.4
The constitution of quassin (1) was established by Valenta

and co-workers in the early 1960s,5 and the same group
subsequently reported its racemic total synthesis in 1991.6
However, the first total synthesis of (()-quassin was only
realized in 1980 by the impressive Grieco group.7 To date,
there is only one report on the synthesis of optically active
(+)-quassin, which was addressed by the Watt group using
the (-)-enantiomer of the Wieland-Miescher ketone as the
starting material.8 In our own quest for an enantiospecific
avenue toward tetracyclic quassinoids such as (+)-quassin
(1), we already disclosed the construction of a partial
quassinoid skeleton 3 that has the general ABC ring system
with five stereogenic centers common to numerous quassi-

noids, based on a C f ABC f ABCD ring annulation
strategy.9 As an extension of this approach, we now report
our successful elaboration of 3 into the target molecule (+)-
quassin (1).
Our recent endeavor9d has shown that (+)-carvone (2)

could be readily converted into tricycle 3, involving an aldol
reaction and an intramolecular Diels-Alder reaction to
create the quaternary centers in 1 (Scheme 1).
After considerable experimentation, we realized that the

sensitive ring D could not survive the conditions for the
functionalization of ring A. Consequently, oxygenation of
ring A had to be executed first before assembly of the D ring.
Toward this end, silylation of 39d afforded alkene 4, which
was subjected to a regioselective allylic oxidation10 with

* To whom correspondence should be addressed. Fax: (852)-2603 5057.
E-mail: tonyshing@cuhk.edu.hk.

† Dedicated to the establishment of the HKSAR government.
‡ To whom inquiries concerning X-ray analysis should be directed.
(1) (a) Polonsky, J. Fortschr. Chem. Org. Naturst. 1985, 47, 221; 1973,

30, 101. (b) London, E.; Robertson, A.; Worthington, H. J. Chem. Soc. 1950,
3431. (c) Beer, R. J. S.; Jaquiss, D. B. G.; Robertson, A.; Savige, W. E. J.
Chem. Soc. 1954, 3672. (d) Hanson, K. R.; Jaquiss, D. B.; Lamberton, J. A.;
Robertson, A.; Savige, W. E. J. Chem. Soc. 1954, 4238. (e) Beer, R. J. S.;
Hanson, K. R.; Robertson, A. J. Chem. Soc. 1956, 3280. (f) Beer, R. J. S.;
Dutton, B. G.; Jaquiss, D. B.; Robertson, A.; Savige, W. E. J. Chem. Soc.
1956, 4850. (g) Carman, R. M.; Ward, A. D. Aust. J. Chem. 1962, 15, 807.

(2) For examples of some recently isolated quassinoids, see: Koike, K.;
Yokoh, M.; Furukawa, M.; Ishii, S.; Ohmoto, T. Phytochemistry 1995, 40,
233. Grieco, P. A.; VanderRoest, J. M.; Pineironunez, M. M.; Campaigne,
E. E.; Carmack, M. Phytochemistry 1995, 38, 1463. Ouyang, Y.; Mitsunaga,
K.; Koike, K.; Ohmoto, T. Phytochemistry 1995, 39, 911.

(3) Grosvenor, P. W.; Gothard, P. K.; Mcwilliam, N. C.; Supriono, A.;
Gray, D. O. J. Ethnopharmacol. 1995, 45, 75. Lidert, Z.; Wing, K.; Polonsky,
J.; Imakurra, Y.; Okano, M.; Tani, S.; Lin, Y.-M.; Kiyokawa, H.; Lee, K.-H.
J. Nat. Prod. 1987, 50, 442. Polonsky, J. In The Chemistry and Chemical
Taxonomy of the Rutales; Waterman, P. G., Grandon, M. F., Eds.; Academic
Press: New York, 1983; p 247.

(4) For examples of some recent synthetic work, see: Chiu, C. K.-F.;
Govindan, S. V.; Fuchs, P. L. J. Org. Chem. 1994, 59, 311. Spino, C.; Liu,
G.; Tu, N.; Girard, S. J. Org. Chem. 1994, 59, 5596. Spino, C.; Tu, N.
Tetrahedron Lett. 1994, 35, 3683. Grieco, P. A.; Piñeiro-Nuñez, M. M. J.
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Scheme 1a

a Key: (a) TBSOTf, 2-6-lutidine, rt, 5 days (98% yield based on 75%
conversion); (b) Cr(CO)6, t-BuOOH, CH3CN, reflux (78% yield based
on 84% conversion); (c) Mn(OAc)3, C6H6, reflux (84%); (d) K2CO3,
MeOH, rt (87%); (e) H2, 10% Pd/C, EtOH, rt (99%); (f) NaH, BnBr,
THF, TBAI (cat.), 0 °C to rt (85%); (g) Et2O‚BF3, CH2Cl2, 0 °C to 10 °C
(92%); (h) Ac2O, DMAP, CH2Cl2, rt (94%); (i) LDA, THF, -78 °C (90%);
(j) SOCl2, pyridine, 0 °C (94%); (k) H2, 10% Pd/C, EtOH, rt (92%); (l)
DIBAL-H, THF, -78 °C then concd HCl (cat.), MeOH, 0 °C; (m) DMSO,
TFAA, CH2Cl2, -78 °C then Et3N, -78 °C to rt; (n) NaH, CH3I, DMF,
-20 °C (65% for steps l to n); (o) LDA, THF, -78 °C then MoOPH,
-78 to 0 °C; (p) DMSO, TFAA, CH2Cl2, -78 °C then Et3N, -78 °C to
rt; (q) NaH, CH3I, DMF, -20 °C (53% for steps o to q); (r) HOAc/H2O
(3:2 v/v), reflux; (s) Fetizon’s reagent, C6H6, reflux (79% for steps r
and s).
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Cr(CO)6 to give enone 511 as the major product: mp 89-90
°C; [R]20D -51.3 (c ) 4.4 in CHCl3). Regioselective acetoxy-
lation with manganic acetate12 at C-1 of enone 5 furnished
R′-acetate 6 as the sole product: mp 119-120 °C; [R]20D
+31.5 (c ) 6.6 in CHCl3). The approach of the acetate group
to the â-face was believed to be hindered by the C-10 angular
methyl group. The structure and stereochemistry of 6 was
confirmed by an X-ray crystallographic analysis.13 Deacety-
lation of 6 followed by catalytic hydrogenation of the alkene
moiety of the enone gave stereoselectively keto alcohol 7 [mp
166-167 °C; [R]20D -65.1 (c ) 4.4 in CHCl3)] in essentially
quantitative yield. Hydrogen was delivered to the â-face of
the alkene moiety because the R-face was probably hindered
more by the C-1 acetate and the C-7 OTBS group. The A
ring was now functionalized, and assembly of the D ring
would be the new mission. Toward this end, the C-1 oxygen
functionality needed to be protected as a benzyl ether while
an acetate group was required at C-7 for subsequent internal
cyclization to form the D ring. Thus, benzylation of 7
afforded benzyl ether 8 from which the silyl blocking group
was replaced by an acetyl group under standard conditions,
giving C-7 acetate 9 [mp 173-174 °C; [R]20D -66.0 (c ) 1.5
in CHCl3)] in excellent overall yield. The ester 9was treated
with lithium diisopropylamide (LDA) at -78 °C to induce
an intramolecular aldol addition. Indeed, the lactone 10 [mp
187-188 °C; [R]20D +10.8 (c ) 1.6 in CHCl3)] was isolated
in 90% yield as a single diastereoisomer. Dehydration of
the â-hydroxylactone 10 using thionyl chloride in pyridine
proceeded smoothly to give R,â-unsaturated lactone 11 in
94% yield: mp 193-194 °C; [R]20D -82.8 (c ) 1.1 in CHCl3).
The structure of 11 and especially the stereochemistry of
the C-4 methyl group were confirmed by an X-ray crystal-
lographic analysis.13 Catalytic hydrogenation of 11 over
palladium caused debenzylation, saturation of the alkene
moiety, and ring opening of the epoxide functionality,14
producing the crystalline diol 12 in 92% yield as a single
compound: mp 215 °C dec; [R]20D +23.3 (c ) 0.5 in CHCl3).
The stereochemistry of the C-13 methyl group was not
determined because it would be lost in the target molecule.

The lactone carbonyl needed to be protected as a mixed
acetal before the enone units in ring A and C could be
established. Thus, keto lactone 12 was transformed into 13
[mp 198-200 °C; [R]20D +77.2 (c ) 1.3 in CHCl3)] by
DIBAL-H reduction of the two carbonyl groups into an
alcohol and a lactol, acetalization of the lactol moiety with
acidic methanol to a mixed acetal, Swern oxidation15 of all
the alcohols to ketones, and O-methylation8 of the R-hydroxy
enone to the R-methoxy enone unit in ring A. The next
objective would be the formation of an R-methoxy enone unit
in ring C and hence completion of the synthesis. Kinetic
deprotonation of 13 with LDA occurred at the C-11 meth-
ylene, and treatment of the resulting enolate with HMPA-
MoO5-pyridine complex (MoOPH)16 gave the corresponding
R-hydroxy ketone, which underwent Swern oxidation and
O-methylation as above to the desired bis-R-methoxy enone
14: mp 218 °C dec; [R]20D +62.4 (c ) 0.5 in CHCl3).
Selective hydrolysis of the acetal moiety in 14 with aqueous
acetic acid followed by mild oxidation with Fetizon’s re-
agent17 (Ag2CO3 on Celite) afforded the target molecule (+)-
quassin, mp 219-220 °C, undepressed with an authentic
sample (lit.5a mp 221 °C): [R]20D +33.8 (c ) 0.5 in CHCl3)
[lit.1b [R]20D +34.5 (c ) 5.1 in CHCl3)]. The synthetic
quassin, the structure of which was confirmed by a X-ray
crystallographic analysis,13 was also identical to the purified
commercial material purchased from Apin Chemicals Ltd
by TLC, MS, IR, and 1H and 13C NMR.
In summary, we have presented a stereoselective and

enantiospecific synthesis of tetracyclic quassin (1).18 Ap-
plication of the established strategy to the syntheses of other
tetracyclic members as well as pentacyclic quassinoids is
under active investigation.
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